Learning Deep Architectures for Al

Yoshua Bengio
Dept. IRO, Université de Montréal
C.P. 6128, Montreal, Qc, H3C 3J7, Canada
Yoshua.Bengio@umontreal.ca
http://www.iro.umontreal.ca/bengioy

To appear ifFoundations and Trends in Machine Learning

Abstract

Theoretical results suggest that in order to learn the kfrtbmplicated functions that can represent high-
level abstractions (e.g. in vision, language, and othetefé! tasks), one may neetbep architectures
Deep architectures are composed of multiple levels of imeal operations, such as in neural nets with
many hidden layers or in complicated propositional forraula-using many sub-formulae. Searching the
parameter space of deep architectures is a difficult tagkdebening algorithms such as those for Deep
Belief Networks have recently been proposed to tackle thidblpm with notable success, beating the
state-of-the-art in certain areas. This paper discusgmttivations and principles regarding learning
algorithms for deep architectures, in particular thosdastipg as building blocks unsupervised learning
of single-layer models such as Restricted Boltzmann Mashinsed to construct deeper models such as
Deep Belief Networks.

1 Introduction

Allowing computers to model our world well enough to exhibhiat we call intelligence has been the focus
of more than half a century of research. To achieve this, dléar that a large quantity of information
about our world should somehow be stored, explicitly or igifly, in the computer. Because it seems
daunting to formalize manually all that information in arfothat computers can use to answer questions
and generalize to new contexts, many researchers havealttoriearning algorithmsto capture a large
fraction of that information. Much progress has been madmtierstand and improve learning algorithms,
but the challenge of artificial intelligence (Al) remainso e have algorithms that can understand scenes
and describe them in natural language? Not really, exceptrin limited settings. Do we have algorithms
that can infer enough semantic concepts to be able to interdcmost humans using these concepts? No.
If we consider image understanding, one of the best spedfilte Al tasks, we realize that we do not yet
have learning algorithms that can discover the many visndlsemantic concepts that would seem to be
necessary to interpret most images on the web. The situigt&milar for other Al tasks.

Consider for example the task of interpreting an input imsigeh as the one in Figure 1. When humans
try to solve a particular Al task (such as machine vision dura language processing), they often exploit
their intuition about how to decompose the problem into pudbblems and multiple levels of representation,
e.g., in object parts and constellation models (Weber, iW¢ell& Perona, 2000; Niebles & Fei-Fei, 2007;
Sudderth, Torralba, Freeman, & Willsky, 2007) where moétaiparts can be re-used in different object in-
stances. For example, the current state-of-the-art in madalision involves a sequence of modules starting
from pixels and ending in a linear or kernel classifier (PjmdCarlo, & Cox, 2008; Mutch & Lowe, 2008),
with intermediate modules mixing engineered transforametiand learning, e.g. first extracting low-level

features that are invariant to small geometric variatiaeglil as edge detectors from Gabor filters), trans-
forming them gradually (e.g. to make them invariant to casitchanges and contrast inversion, sometimes
by pooling and sub-sampling), and then detecting the megquint patterns. A plausible and common way
to extract useful information from a natural image involsmsforming the raw pixel representation into
gradually more abstract representations, e.g., stamimg the presence of edges, the detection of more com-
plex but local shapes, up to the identification of abstrat#garies associated with sub-objects and objects
which are parts of the image, and putting all these togetheapture enough understanding of the scene to
answer questions about it.

Here, we assume that the computational machinery necessexpress complex behaviors (which one
might label “intelligent”) requireighly varyingmathematical functions, i.e. mathematical functions that
are highly non-linear in terms of raw sensory inputs, angldisa very large number of variations (ups and
downs) across the domain of interest. We view the raw inpthédearning system as a high dimensional
entity, made of many observed variables, which are relagathknown intricate statistical relationships. For
example, using knowledge of the 3D geometry of solid objantslighting, we can relate small variations in
underlying physical and geometric factors (such as pasitidentation, lighting of an object) with changes
in pixel intensities for all the pixels in an image. We cak#efactors of variatiorbecause they are different
aspects of the data that can vary separately and often indep#y. In this case, explicit knowledge of
the physical factors involved allows one to get a picturehef inathematical form of these dependencies,
and of the shape of the set of images (as points in a high-diimieal space of pixel intensities) associated
with the same 3D obiject. If a machine captured the factotsetkiaain the statistical variations in the data,
and how they interact to generate the kind of data we obsemeyould be able to say that the machine
understandshose aspects of the world covered by these factors of i@riat/nfortunately, in general and
for most factors of variation underlying natural images,deenot have an analytical understanding of these
factors of variation. We do not have enough formalized pkioowledge about the world to explain the
observed variety of images, even for such an apparentlylsiaigstraction abMAN, illustrated in Figure 1.

A high-level abstraction such &8AN has the property that it corresponds to a very large set cfilples
images, which might be very different from each other from ploint of view of simple Euclidean distance
in the space of pixel intensities. The set of images for witliet label could be appropriate forms a highly
convoluted region in pixel space that is not even necegsarbnnected region. THdAN category can be
seen as a high-level abstraction with respect to the spaceagies. What we call abstraction here can be a
category (such as thdAN category) or deature a function of sensory data, which can be discrete (thg.,
input sentence is at the past tense) or continuous (e.gthe input video shows an object moving at

2 meter/second). Many lower-level and intermediate-level concepts (Whie also call abstractions here)
would be useful to construct™AN -detector. Lower level abstractions are more directly teegarticular
percepts, whereas higher level ones are what we call “mastraath’ because their connection to actual
percepts is more remote, and through other, intermedéatd-hbstractions.

In addition to the difficulty of coming up with the appropeahtermediate abstractions, the number of
visual and semantic categories (suchMN) that we would like an “intelligent” machine to capture is
rather large. The focus of deep architecture learning isitoraatically discover such abstractions, from the
lowest level features to the highest level concepts. Igead would like learning algorithms that enable
this discovery with as little human effort as possible,, ivéithout having to manually define all necessary
abstractions or having to provide a huge set of relevant falpeled examples. If these algorithms could
tap into the huge resource of text and images on the web, ilda@utainly help to transfer much of human
knowledge into machine-interpretable form.

1.1 How do We Train Deep Architectures?

Deep learning methods aim at learning feature hierarchitbsfeatures from higher levels of the hierarchy
formed by the composition of lower level features. Autorcaty learning features at multiple levels of
abstraction allows a system to learn complex functions nmgpiine input to the output directly from data,

very high level representation:
MAN| |SITTING

A

... etc...

A

slightly higher level representation

raw input vector representation:

a=[23[19[20] = T[1s

. ‘.‘/(a, /r, .
2 .
8 3 n:

éﬁ(f’l K

Figure 1: We would like the raw inputimage to be transformmed gradually higher levels of representation,

representing more and more abstract functions of the rawtjrgg., edges, local shapes, object parts,
etc. In practice, we do not know in advance what the “righffresentation should be for all these levels
of abstractions, although linguistic concepts might halpgsing what the higher levels should implicitly

represent.

without depending completely on human-crafted featurdds i6 especially important for higher-level ab-
stractions, which humans often do not know how to specifylieitly in terms of raw sensory input. The
ability to automatically learn powerful features will beae increasingly important as the amount of data
and range of applications to machine learning methodsmoasito grow.

Depth of architectureefers to the number of levels of composition of non-lingaemtions in the func-
tion learned. Whereas most current learning algorithmsespond teshallow architecture§l, 2 or 3 levels),
the mammal brain is organized irdaep architectur¢Serre, Kreiman, Kouh, Cadieu, Knoblich, & Poggio,
2007) with a given input percept represented at multiplelewof abstraction, each level corresponding to
a different area of cortex. Humans often describe such g@isde hierarchical ways, with multiple levels
of abstraction. The brain also appears to process infoom#trough multiple stages of transformation and
representation. This is particularly clear in the primatial system (Serre et al., 2007), with its sequence
of processing stages: detection of edges, primitive shapelsmoving up to gradually more complex visual
shapes.

Inspired by the architectural depth of the brain, neuralvoek researchers had wanted for decades to
train deep multi-layer neural networks (Utgoff & Stracy2002; Bengio & LeCun, 2007), but no success-
ful attempts were reported before 2008esearchers reported positive experimental results tyfifcally
two or three levels (i.e. one or two hidden layers), but iragjrdeeper networks consistently yielded poorer
results. Something that can be considerdatemkthroughhappened in 2006: Hinton and collaborators at
U. of Toronto introduced Deep Belief Networks or DBNs for ghlinton, Osindero, & Teh, 2006), with
a learning algorithm that greedily trains one layer at a fimeloiting an unsupervised learning algorithm
for each layer, a Restricted Boltzmann Machine (RBM) (Foe@&Haussler, 1994). Shortly after, related
algorithms based on auto-encoders were proposed (Bengmblin, Popovici, & Larochelle, 2007; Ran-
zato, Poultney, Chopra, & LeCun, 2007), apparently exiplgithe same principleguiding the training of
intermediate levels of representation using unsupendisaching, which can be performed locally at each
level Other algorithms for deep architectures were proposec menently that exploit neither RBMs nor
auto-encoders and that exploit the same principle (WeRatig, & Collobert, 2008; Mobahi, Collobert, &
Weston, 2009) (see Section 4).

Since 2006, deep networks have been applied with successlydh classification tasks (Bengio et al.,
2007; Ranzato et al., 2007; Larochelle, Erhan, CourvillergBtra, & Bengio, 2007; Ranzato, Boureau, &
LeCun, 2008; Vincent, Larochelle, Bengio, & Manzagol, 208Bmed, Yu, Xu, Gong, & Xing, 2008; Lee,
Grosse, Ranganath, & Ng, 2009), but also in regressionKBaldinov & Hinton, 2008), dimensionality re-
duction (Hinton & Salakhutdinov, 2006a; Salakhutdinov &nkin, 2007a), modeling textures (Osindero &
Hinton, 2008), modeling motion (Taylor, Hinton, & Rowei€)(7; Taylor & Hinton, 2009), object segmen-
tation (Levner, 2008), information retrieval (Salakhuiol' & Hinton, 2007b; Ranzato & Szummer, 2008;
Torralba, Fergus, & Weiss, 2008), robotics (Hadsell, Efksermanet, Scoffier, Muller, & LeCun, 2008),
natural language processing (Collobert & Weston, 2008;tdvest al., 2008; Mnih & Hinton, 2009), and
collaborative filtering (Salakhutdinov, Mnih, & Hinton, @®). Although auto-encoders, RBMs and DBNs
can be trained with unlabeled data, in many of the above egipiins, they have been successfully used to
initialize deepsupervisedeedforward neural networks applied to a specific task.

1.2 Intermediate Representations: Sharing Features and Adiractions Across Tasks

Since a deep architecture can be seen as the compositionetiea ef processing stages, the immediate
guestion that deep architectures raise is: what kind ofsgrtation of the data should be found as the out-
put of each stage (i.e., the input of another)? What kindtefface should there be between these stages? A
hallmark of recent research on deep architectures is thesfoe these intermediate representations: the suc-
cess of deep architectures belongs to the representatiamseld in an unsupervised way by RBMs (Hinton
et al., 2006), ordinary auto-encoders (Bengio et al., 2pgrse auto-encoders (Ranzato et al., 2007, 2008),
or denoising auto-encoders (Vincent et al., 2008). Thegaridhms (described in more detail in Section 7.2)

1Except for neural networks with a special structure call@avolutional networks, discussed in Section 4.5.

can be seen as learning to transform one representationtpat of the previous stage) into another, at

each step maybe disentangling better the factors of vamisitinderlying the data. As we discuss at length
in Section 4, it has been observed again and again that oneedargpresentation has been found at each
level, it can be used to initialize and successfully traireamneural network by supervised gradient-based
optimization.

Each level of abstraction found in the brain consists of thetivation” (neural excitation) of a small
subset of a large number of features that are, in generainotially exclusive. Because these features
are not mutually exclusive, they form what is calledistributed representatio(Hinton, 1986; Rumelhart,
Hinton, & Williams, 1986b): the information is not localiden a particular neuron but distributed across
many. In addition to being distributed, it appears that trerbuses a representation thasggarse only
around 1-4% of the neurons are active together at a given(fteell & Laughlin, 2001; Lennie, 2003).
Section 3.2 introduces the notion of sparse distributedeggmtation and 7.1 describes in more detail the
machine learning approaches, some inspired by the obsmrsaif the sparse representations in the brain,
that have been used to build deep architectures with spgpsesentations.

Whereas dense distributed representations are one extfeargpectrum, and sparse representations are
in the middle of that spectrum, purely local representatiane the other extreme. Locality of representation
is intimately connected with the notion lofcal generalizationMany existing machine learning methods are
local in input spaceto obtain a learned function that behaves differently ffedént regions of data-space,
they require different tunable parameters for each of theg®ns (see more in Section 3.1). Even though
statistical efficiency is not necessarily poor when the nend tunable parameters is large, good general-
ization can be obtained only when adding some form of prigy. (fhat smaller values of the parameters are
preferred). When that prior is not task-specific, it is oftere that forces the solution to be very smooth, as
discussed at the end of Section 3.1. In contrast to learnethoads based on local generalization, the total
number of patterns that can be distinguished using a disérbrepresentation scales possibly exponentially
with the dimension of the representation (i.e. the numbégarihed features).

In many machine vision systems, learning algorithms haemn lienited to specific parts of such a pro-
cessing chain. The rest of the design remains labor-intenaihich might limit the scale of such systems.
On the other hand, a hallmark of what we would consider iigetit machines includes a large enough reper-
toire of concepts. RecognizingAN is not enough. We need algorithms that can tackle a very segef
such tasks and concepts. It seems daunting to manually definemany tasks, and learning becomes essen-
tial in this context. Furthermore, it would seem foolish twéxploit the underlying commonalities between
these tasks and between the concepts they require. Thigebaghe focus of research amulti-task learn-
ing (Caruana, 1993; Baxter, 1995; Intrator & Edelman, 1996.unhi996; Baxter, 1997). Architectures
with multiple levels naturally provide such sharing anduse of components: the low-level visual features
(like edge detectors) and intermediate-level visual festlike object parts) that are useful to det&d&N
are also useful for a large group of other visual tasks. Deaming algorithms are based on learning inter-
mediate representations which can be shared across taskse lthey can leverage unsupervised data and
data from similar tasks (Raina, Battle, Lee, Packer, & Nd)7)@o boost performance on large and chal-
lenging problems that routinely suffer from a poverty ofdded data, as has been shown by Collobert and
Weston (2008), beating the state-of-the-art in severailrabfanguage processing tasks. A similar multi-task
approach for deep architectures was applied in vision thgkShmed et al. (2008). Consider a multi-task
setting in which there are different outputs for differeaks, all obtained from a shared pool of high-level
features. The fact that many of these learned features aredlamongn tasks provides sharing of sta-
tistical strength in proportion te:. Now consider that these learned high-level features camglelves be
represented by combining lower-level intermediate festdirom a common pool. Again statistical strength
can be gained in a similar way, and this strategy can be drglfor every level of a deep architecture.

In addition, learning about a large set of interrelated epitg might provide a key to the kind of broad
generalizations that humans appear able to do, which wedamatl expect from separately trained object
detectors, with one detector per visual category. If eaghevel category is itself represented through
a particular distributed configuration of abstract feasuirem a common pool, generalization to unseen

categories could follow naturally from new configuratiofishese features. Even though only some config-
urations of these features would be present in the trainiagles, if they represent different aspects of the
data, new examples could meaningfully be represented bycoafigurations of these features.

1.3 Desiderata for Learning Al

Summarizing some of the above issues, and trying to put timethe broader perspective of Al, we put
forward a number of requirements we believe to be importamiearning algorithms to approach Al, many
of which motivate the research described here:

¢ Ability to learn complex, highly-varying functions, i.evjith a number of variations much greater than
the number of training examples.

o Ability to learn with little human input the low-level, intmediate, and high-level abstractions that
would be useful to represent the kind of complex functioredeel for Al tasks.

e Ability to learn from a very large set of examples: computattime for training should scale well
with the number of examples, i.e. close to linearly.

¢ Ability to learn from mostly unlabeled data, i.e. to work lretsemi-supervised setting, where not all
the examples come with complete and correct semantic labels

o Ability to exploit the synergies present across a large nematbtasks, i.e. multi-task learning. These
synergies exist because all the Al tasks provide differesws on the same underlying reality.

e Strongunsupervised learnin@.e. capturing most of the statistical structure in theesbed data),
which seems essential in the limit of a large number of tasikbkvahen future tasks are not known
ahead of time.

Other elements are equally important but are not directlynegted to the material in this paper. They
include the ability to learn to represent context of varyleggth and structure (Pollack, 1990), so as to
allow machines to operate in a context-dependent strearhs@reations and produce a stream of actions,
the ability to make decisions when actions influence theréuabservations and future rewards (Sutton &
Barto, 1998), and the ability to influence future observatiso as to collect more relevant information about
the world, i.e. a form of active learning (Cohn, Ghahramé&nlprdan, 1995).

1.4 Outline of the Paper

Section 2 reviews theoretical results (which can be skipgétbut hurting the understanding of the remain-
der) showing that an architecture with insufficient depth oequire many more computational elements,
potentially exponentially more (with respect to input 3jzban architectures whose depth is matched to the
task. We claim that insufficient depth can be detrimentaldarning. Indeed, if a solution to the task is
represented with a very large but shallow architecturen(wiatny computational elements), a lot of training
examples might be needed to tune each of these elements@ndeca highly-varying function. Section 3.1
is also meant to motivate the reader, this time to highligbtlimitations of local generalization and local
estimation, which we expect to avoid using deep architestwith a distributed representation (Section 3.2).
In later sections, the paper describes and analyzes soime alfforithms that have been proposed to train
deep architectures. Section 4 introduces concepts frometeal networks literature relevant to the task of
training deep architectures. We first consider the prewuiliifisulties in training neural networks with many
layers, and then introduce unsupervised learning alguostthat could be exploited to initialize deep neural
networks. Many of these algorithms (including those forRRgM) are related to thauto-encodera simple
unsupervised algorithm for learning a one-layer model tweputes a distributed representation for its
input (Rumelhart et al., 1986b; Bourlard & Kamp, 1988; Hm&Zemel, 1994). To fully understand RBMs

and many related unsupervised learning algorithms, Seétiatroduces the class of energy-based models,
including those used to build generative models with hiddamnables such as the Boltzmann Machine.
Section 6 focus on the greedy layer-wise training algorgtior Deep Belief Networks (DBNs) (Hinton

et al., 2006) and Stacked Auto-Encoders (Bengio et al., 2B@rzato et al., 2007; Vincent et al., 2008).
Section 7 discusses variants of RBMs and auto-encoderhévat been recently proposed to extend and
improve them, including the use of sparsity, and the modedfrtemporal dependencies. Section 8 discusses
algorithms for jointly training all the layers of a Deep BxINetwork using variational bounds. Finally, we
consider in Section 9 forward looking questions such as fpothesized difficult optimization problem
involved in training deep architectures. In particular,feow up on the hypothesis that part of the success
of current learning strategies for deep architectures imeoted to the optimization of lower layers. We
discuss the principle of continuation methods, which minergradually less smooth versions of the desired
cost function, to make a dent in the optimization of deepisctures.

2 Theoretical Advantages of Deep Architectures

In this section, we present a motivating argument for thdysaf learning algorithms for deep architectures,
by way of theoretical results revealing potential limiteis of architectures with insufficient depth. This part
of the paper (this section and the next) motivates the dtyos described in the later sections, and can be
skipped without making the remainder difficult to follow.

The main point of this section is that some functions caneafficiently represented (in terms of number
of tunable elements) by architectures that are too shalltvse results suggest that it would be worthwhile
to explore learning algorithms for deep architectures,clwhinight be able to represent some functions
otherwise not efficiently representable. Where simplersdnadiower architectures fail to efficiently represent
(and hence to learn) a task of interest, we can hope for legaigorithms that could set the parameters of a
deep architecture for this task.

We say that the expression of a functiorc@mpactwhen it has few computational elements, i.e. few
degrees of freedom that need to be tuned by learning. So fadfiumber of training examples, and short of
other sources of knowledge injected in the learning algorjtwe would expect that compact representations
of the target functiohwould yield better generalization.

More precisely, functions that can be compactly represebyea depthi: architecture might require an
exponential number of computational elements to be reptedéy a depttk — 1 architecture. Since the
number of computational elements one can afford dependseonumber of training examples available to
tune or select them, the consequences are not just congnakbut also statistical: poor generalization may
be expected when using an insufficiently deep architectureepresenting some functions.

We consider the case of fixed-dimension inputs, where thepotetion performed by the machine can
be represented by a directed acyclic graph where each nofterme a computation that is the application
of a function on its inputs, each of which is the output of &eothode in the graph or one of the external
inputs to the graph. The whole graph can be viewed escait that computes a function applied to the
external inputs. When the set of functions allowed for thepaotation nodes is limited timgic gates such
as{ AND, OR, NOT}, this is a Boolean circuit, dogic circuit.

To formalize the notion of depth of architecture, one musbithuce the notion of aet of computational
elementsAn example of such a set is the set of computations that caetiermed logic gates. Another is
the set of computations that can be performed by an artifigiaton (depending on the values of its synaptic
weights). A function can be expressed by the compositioroafputational elements from a given set. It
is defined by a graph which formalizes this composition, weitie node per computational element. Depth
of architecture refers to the depth of that graph, i.e. tingést path from an input node to an output node.
When the set of computational elements is the set of conmipataan artificial neuron can perform, depth
corresponds to the number of layers in a neural network. setplore the notion of depth with examples

2The target function is the function that we would like thertesa to discover.

output

element
set

fr
or

on
X a b

inputs inputs

gl

Figure 2: Examples of functions represented by a graph opcoations, where each node is taken in some
“element set” of allowed computations. Left: the elemen¢gga, +, —, sin}UR. The architecture computes
xxsin(axz+b) and has depth 4. Right: the elements are artificial neurampuatngf (x) = tanh(b+w’'x);
each element in the set has a differéwt b) parameter. The architecture is a multi-layer neural netvadr
depth 3.

of architectures of different depths. Consider the funtfi¢x) = x * sin(a * « + b). It can be expressed
as the composition of simple operations such as additidtraction, multiplication, and th€n operation,
as illustrated in Figure 2. In the example, there would befferdint node for the multiplication * = and
for the final multiplication byx. Each node in the graph is associated with an output valusraat by
applying some function on input values that are the outplutdher nodes of the graph. For example, in a
logic circuit each node can compute a Boolean function tdf@n a small set of Boolean functions. The
graph as a whole has input nodes and output nodes and comnagdutedion from input to output. Theepth

of an architecture is the maximum length of a path from anwyirgf the graph to any output of the graph,
i.e. 4inthe case of * sin(a * z + b) in Figure 2.

¢ If we include affine operations and their possible compositvith sigmoids in the set of computa-
tional elements, linear regression and logistic regredsave depth 1, i.e., have a single level.

e When we put a fixed kernel computatidf(u, v) in the set of allowed operations, along with affine
operations, kernel machines (Scholkopf, Burges, & Sni#&89a) with a fixed kernel can be consid-
ered to have two levels. The first level has one element canpii(x, x;) for each prototype; (a
selected representative training example) and matchésphévectorx with the prototypes;. The
second level performs an affine combination >, a; K (x, x;) to associate the matching prototypes
x; with the expected response.

e When we put artificial neurons (affine transformation follmhby a non-linearity) in our set of el-
ements, we obtain ordinary multi-layer neural networksr{Rlhart et al., 1986b). With the most
common choice of one hidden layer, they also have depth tveohidden layer and the output layer).

e Decision trees can also be seen as having two levels, asdetin Section 3.1.

e Boosting (Freund & Schapire, 1996) usually adds one levigbtbase learners: that level computes a
vote or linear combination of the outputs of the base leatner

e Stacking (Wolpert, 1992) is another meta-learning alganithat adds one level.

e Based on current knowledge of brain anatomy (Serre et 28720 appears that the cortex can be
seen as a deep architecture, with 5 to 10 levels just for thealsystem.

Although depth depends on the choice of the set of allowedpctations for each element, graphs
associated with one set can often be converted to graphsiaiezbwith another by an graph transformation
in a way that multiplies depth. Theoretical results suggfest it is not the absolute number of levels that
matters, but the number of levels relative to how many areired to represent efficiently the target function
(with some choice of set of computational elements).

2.1 Computational Complexity

The most formal arguments about the power of deep archiescttome from investigations into computa-
tional complexity of circuits. The basic conclusion thatdh results suggest is thwlhen a function can be
compactly represented by a deep architecture, it might r@eeery large architecture to be represented by
an insufficiently deep one

A two-layer circuit of logic gates can represent any Boolkarttion (Mendelson, 1997). Any Boolean
function can be written as a sum of products (disjunctivarrarform: AND gates on the first layer with
optional negation of inputs, and OR gate on the second layea) product of sums (conjunctive normal
form: OR gates on the first layer with optional negation ofuty) and AND gate on the second layer).
To understand the limitations of shallow architectures, filhst result to consider is that with depth-two
logical circuits, most Boolean functions require@ponentialwith respect to input size) number of logic
gates (Wegener, 1987) to be represented.

More interestingly, there are functions computable witltolypomial-size logic gates circuit of depkh
that require exponential size when restricted to dépthl (Hastad, 1986). The proof of this theorem relies
on earlier results (Yao, 1985) showing thibit parity circuits of depth 2 have exponential siZEhe d-bit
parity functionis defined as usual:

1if Y% b, iseven

o d
parity : (b1,...,bq) € {0,1}¢ — { 0 othenmise.

One might wonder whether these computational complexgylte for Boolean circuits are relevant to
machine learning. See Orponen (1994) for an early surveyemiretical results in computational complexity
relevant to learning algorithms. Interestingly, many & tesults for Boolean circuits can be generalized to
architectures whose computational elementdiaear thresholdunits (also known as artificial neurons (Mc-
Culloch & Pitts, 1943)), which compute

f(x) = Lwx+b>0 (1)

with parametersv andb. Thefan-in of a circuit is the maximum number of inputs of a particulamaént.
Circuits are often organized in layers, like multi-layeured networks, where elements in a layer only take
their input from elements in the previous layer(s), and tret fayer is the neural network input. Tezeof
a circuit is the number of its computational elements (ediclg input elements, which do not perform any
computation).

Of particular interest is the following theorem, which a@pplto monotone weighted threshold circuits
(i.e. multi-layer neural networks with linear thresholdtsrand positive weights) when trying to represent a
function compactly representable with a depttircuit:

Theorem 2.1. A monotone weighted threshold circuit of depth- 1 computing a functiorf, € Fj, y has
size at lease" for some constant > 0 and N > N, (Hastad & Goldmann, 1991).

The class of functionsy, v is defined as follows. It contains functions wil¥i**—2 inputs, defined by a
depthk circuit that is a tree. At the leaves of the tree there are gateel input variables, and the function
value is at the root. Theth level from the bottom consists of AND gates whias even and OR gates when
i is odd. The fan-in at the top and bottom leveNsand at all other levels it i&/2.

The above results do not prove that other classes of fure(grch as those we want to learn to perform
Al tasks) require deep architectures, nor that these detnawed limitations apply to other types of circuits.

However, these theoretical results beg the question: arddpth 1, 2 and 3 architectures (typically found
in most machine learning algorithms) too shallow to repmeséiciently more complicated functions of the
kind needed for Al tasks? Results such as the above theosersadigest thahere might be no universally
right depth each function (i.e. each task) might require a particularimmum depth (for a given set of
computational elements). We should therefore strive teldgvlearning algorithms that use the data to
determine the depth of the final architecture. Note alsorbatrsive computation defines a computation
graph whose depth increases linearly with the number aftitans.

(x122)(X2X3) + (z122)(x324) + (X2X3)2 + (x2x3)(324)

Figure 3: Example of polynomial circuit (with products ondoldyers and sums on even ones) illustrating
the factorization enjoyed by a deep architecture. For eXathe level-1 producksxs would occur many
times (exponential in depth) in a depth 2 (sum of productpespon of the above polynomial.

2.2 Informal Arguments

Depth of architecture is connected to the notion of highdyying functions. We argue that, in general, deep
architectures can compactly represent highly-varyingfions which would otherwise require a very large
size to be represented with an inappropriate architectwe.say that a function ikighly-varyingwhen

a piecewise approximation (e.g., piecewise-constant@gepvise-linear) of that function would require a
large number of pieces. A deep architecture is a compogifionany operations, and it could in any case
be represented by a possibly very large depth-2 archiectlihe composition of computational units in
a small but deep circuit can actually be seen as an efficiaatdfization” of a large but shallow circuit.
Reorganizing the way in which computational units are cosepiacan have a drastic effect on the efficiency
of representation size. For example, imagine a d@gthepresentation of polynomials where odd layers
implement products and even layers implement sums. Thiistacture can be seen as a particularly efficient
factorization, which when expanded into a depth 2 architecsuch as a sum of products, might require a
huge number of terms in the sum: consider a level 1 produa dixs in Figure 3) from the deptBk
architecture. It could occur many times as a factor in manyseof the depth 2 architecture. One can see
in this example that deep architectures can be advantagfesame computations (e.g. at one level) can
be shared (when considering the expanded depth 2 exprgsBidihat case, the overall expression to be
represented can be factored out, i.e., represented mongembi;mwith a deep architecture.

Further examples suggesting greater expressive poweregf aiehitectures and their potential for Al
and machine learning are also discussed by Bengio and LeZD@Y). An earlier discussion of the ex-
pected advantages of deeper architectures in a more aagpéispective is found in Utgoff and Stracuzzi
(2002). Note that connectionist cognitive psychologisteéehbeen studying for long time the idea of neu-
ral computation organized with a hierarchy of levels of esggntation corresponding to different levels of

10

abstraction, with a distributed representation at eachl igvcClelland & Rumelhart, 1981; Hinton & An-
derson, 1981; Rumelhart, McClelland, & the PDP Researchugrb986a; McClelland, Rumelhart, & the
PDP Research Group, 1986; Hinton, 1986; McClelland & Rumar¢]li1988). The modern deep architecture
approaches discussed here owe a lot to these early devaltgpribese concepts were introduced in cogni-
tive psychology (and then in computer science / Al) in ordemtplain phenomena that were not as naturally
captured by earlier cognitive models, and also to connecttignitive explanation with the computational
characteristics of the neural substrate.

To conclude, a number of computational complexity resufengly suggest that functions that can be
compactly represented with a deptlarchitecture could require a very large number of elementsder to
be represented by a shallower architecture. Since eaclepterhthe architecture might have to be selected,
i.e., learned, using examples, these results suggest epét of architecture can be very important from
the point of view of statistical efficiency. This notion iswédoped further in the next section, discussing a
related weakness of many shallow architectures assodigtiedon-parametric learning algorithms: locality
in input space of the estimator.

3 Local vsNon-Local Generalization

3.1 The Limits of Matching Local Templates

How can a learning algorithm compactly represent a “conapdid” function of the input, i.e., one that has
many more variations than the number of available trainkaggples? This question is both connected to the
depth question and to the question of locality of estimatéfs argue that local estimators are inappropriate
to learn highly-varying functions, even though they canepttilly be represented efficiently with deep
architectures. An estimator thatliscal in input spaceobtains good generalization for a new inpuby
mostly exploiting training examples in the neighborhoodkof For example, thé& nearest neighbors of
the test pointk, among the training examples, vote for the predictios.at.ocal estimators implicitly or
explicitly partition the input space in regions (possibiya soft rather than hard way) and require different
parameters or degrees of freedom to account for the possillge of the target function in each of the
regions. When many regions are necessary because theofuischighly varying, the number of required
parameters will also be large, and thus the number of exanmgleded to achieve good generalization.

The local generalization issue is directly connected tditeeature on thecurse of dimensionalifybut
the results we cite show thathat matters for generalization is not dimensionality, instead the number
of “variations” of the function we wish to obtain after leanmyg. For example, if the function represented
by the model is piecewise-constant (e.g. decision trebs)) the question that matters is the number of
pieces required to approximate properly the target functithere are connections between the number of
variations and the input dimension: one can readily desigrilfes of target functions for which the number
of variations is exponential in the input dimension, suckhasparity function withd inputs.

Architectures based on matching local templates can begtitaf as having two levels. The first level
is made of a set of templates which can be matched to the idptemplate unit will output a value that
indicates the degree of matching. The second level combives® values, typically with a simple linear
combination (an OR-like operation), in order to estimate desired output. One can think of this linear
combination as performing a kind of interpolation in ordeptoduce an answer in the region of input space
that is between the templates.

The prototypical example of architectures based on madchical templates is thé&ernel ma-
chine(Scholkopf et al., 1999a)

flx)= b—i—ZaiK(x,xi), 2)
whereb and«; form the second level, while on the first level, tkernel functionk (x, x;) matches the
input x to the training exampl&; (the sum runs over some or all of the input patterns in thaitrgiset).

11

In the above equatiorf,(x) could be for example the discriminant function of a classifie the output of a
regression predictor.

A kernel islocal when K (x,x;) > p is true only forx in some connected region arourd(for some
thresholdp). The size of that region can usually be controlled by a hyga@ameter of the kernel function.
An example of local kernel is the Gaussian kerfgl, x;) = e~!Ix=xill’/* wheres controls the size of
the region around;. We can see the Gaussian kernel as computing a soft corgunbicause it can be
written as a product of one-dimensional conditioAgu, v) = []. e~ (% =v)*/* If |u; — v,| /o is small
for all dimensiongj, then the pattern matches af(u, v) is large. Iflu; — v;|/o is large for a singlg,
then there is no match ardd(u, v) is small.

Well-known examples of kernel machines include Supportafeiglachines (SVMs) (Boser, Guyon, &
Vapnik, 1992; Cortes & Vapnik, 1995) and Gaussian proce®¥#ams & Rasmussen, 19968)or classifi-
cation and regression, but also classical non-parame#iaing algorithms for classification, regression and
density estimation, such as thenearest neighbor algorithm, Nadaraya-Watson or Parzedoms density
and regression estimators, etc. Below, we disaussifold learning algorithmsuch as Isomap and LLE that
can also be seen as local kernel machines, as well as retatedapervised learning algorithms also based
on the construction of aeighborhood graplfwith one node per example and arcs between neighboring
examples).

Kernel machines with a local kernel yield generalizatiorelgploiting what could be called tremooth-
ness prior the assumption that the target function is smooth or can ddeapproximated with a smooth
function. For example, in supervised learning, if we haetthining exampléx;, y;), then it makes sense
to construct a predictof(x) which will output something close tg; whenx is close tox;. Note how this
prior requires defining a notion of proximity in input spackhis is a useful prior, but one of the claims
made in Bengio, Delalleau, and Le Roux (2006) and Bengio a@un (2007) is that such a prior is often
insufficient to generalize when the target function is hygbdrying in input space.

The limitations of a fixed generic kernel such as the Gaudstamel have motivated a lot of research in
designing kernelbased on prior knowledge about the task (Jaakkola & Hayd®é@8; Scholkopf, Mika,
Burges, Knirsch, Muller, Ratsch, & Smola, 1999b; Gart2€03; Cortes, Haffner, & Mohri, 2004). How-
ever, if we lack sufficient prior knowledge for designing qpeopriate kernel, can we learn it? This question
also motivated much research (Lanckriet, Cristianini,tB#r El Gahoui, & Jordan, 2002; Wang & Chan,
2002; Cristianini, S